Rational QR-iteration without inversion

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A rational QR-iteration

In this manuscript a new type of QR-iteration will be presented. Each step of this new iteration consists of two substeps. In the explicit version, first an RQ-factorization of the initial matrix A−κI = RQ will be computed, followed by a QR-factorization of the matrix (A−σI)QH . Applying the unitary similarity transformation defined by the QR-factorization of the transformed matrix (A−σI)QH , w...

متن کامل

A Multishift Qr Iteration without Computation of the Shifts1

Each iteration of the multishift QR algorithm of Bai and Demmel requires the computation of a \shift vector" deened by m shifts of the origin of the spectrum that control the convergence of the process. A common choice of shifts consists of the eigenvalues of the trailing principal submatrix of order m, and current practice includes the computation of these eigenvalues in the determination of t...

متن کامل

A stable iteration to the matrix inversion

The matrix inversion plays a signifcant role in engineering and sciences. Any nonsingular square matrix has a unique inverse which can readily be evaluated via numerical techniques such as direct methods, decomposition scheme, iterative methods, etc. In this research article, first of all an algorithm which has fourth order rate of convergency with conditional stability will be proposed. ...

متن کامل

The QR iteration method for quasiseparable matrices

Let {ak}, k = 1, . . . , N be a family of matrices of sizes rk × rk−1. For positive integers i, j, i > j define the operation aij as follows: a × ij = ai−1 · · ·aj+1 for i > j + 1, aj+1,j = Irj . Let {bk}, k = 1, . . . , N be a family of matrices of sizes rk−1 × rk. For positive integers i, j, j > i define the operation bij as follows: b × ij = bi+1 · · · bj−1 for j > i+ 1, bi,i+1 = Iri . It is...

متن کامل

Computing Approximate (Symmetric Block) Rational Krylov Subspaces without Explicit Inversion

It has been shown that approximate extended Krylov subspaces can be computed –under certain assumptions– without any explicit inversion or system solves. Instead the necessary products A−1v are obtained in an implicit way retrieved from an enlarged Krylov subspace. In this paper this approach is generalized to rational Krylov subspaces, which contain besides poles at infinite and zero also fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2008

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-008-0177-3